领扣LintCode算法问题答案-326. 滑动数独

领扣LintCode算法问题答案-326. 滑动数独

326. 滑动数独

给定一个 3×n 的矩阵 number,并且该矩阵只含有1到9的正整数。
考虑有一个大小为 3×3 滑动窗口,从左到右遍历该矩阵 number,
那么该滑动窗口在遍历整个矩阵的过程中会有n-2个。

现在你的任务是找出这些滑动窗口是否含有1到9的所有正整数
请返回一个长度为n-2的答案数组,如果第i个滑动窗口含有1到9的所有正整数,那么答案数组的第i个元素为true,否则为false

样例 1:

输入:[[1,2,3,2,5,7],[4,5,6,1,7,6],[7,8,9,4,8,3]]
输出:[true,false,true,false]
解释:第一个和第三个滑动窗口含有1到9所有数字,其他的滑动窗口不含有1到9的所有数字

public class Solution {
    /**
     * @param number: an only contains from 1 to 9 array
     * @return: return  whether or not each sliding window position contains all the numbers for 1 to 9 
     */
    public boolean[] SlidingWindows(int[][] number) {
        // write your code here
        final int windowSize = 3;

        int cols = number[0].length;
        boolean[] ret = new boolean[cols - windowSize + 1];
        int[] counter = new int[9];
        for (int i = 0; i < windowSize; i++) {
            for (int j = 0; j < windowSize; j++) {
                counter[number[j][i] - 1]++;
            }
        }
        int dis = 0;
        for (int count : counter) {
            dis += Math.abs(count - 1);
        }
        ret[0] = dis == 0;

        for (int i = windowSize; i < cols; i++) {
            for (int j = 0; j < windowSize; j++) {
                dis -= Math.abs(counter[number[j][i - windowSize] - 1] - 1);
                counter[number[j][i - windowSize] - 1]--;
                dis += Math.abs(counter[number[j][i - windowSize] - 1] - 1);


                dis -= Math.abs(counter[number[j][i] - 1] - 1);
                counter[number[j][i] - 1]++;
                dis += Math.abs(counter[number[j][i] - 1] - 1);
            }
            ret[i - windowSize + 1] = dis == 0;
        }

        return ret;
    }
}

原题链接点这里

鸣谢

非常感谢你愿意花时间阅读本文章,本人水平有限,如果有什么说的不对的地方,请指正。
欢迎各位留言讨论,希望小伙伴们都能每天进步一点点。

©️2020 CSDN 皮肤主题: 鲸 设计师:meimeiellie 返回首页